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ABSTRACT

A large number of terpenoids exhibit potential geroprotector and anti-cancer 
properties. Here, we studied whole transcriptomic effects of Abisil, the extract of fir 
(Abies sibirica) terpenes, on normal and cancer cell lines. We used early passaged and 
senescent none-immortalized fibroblasts as cellular aging models. It was revealed 
that in normal fibroblasts, terpenes induced genes of stress response, apoptosis 
regulation and tissue regeneration. The restoration of the expression level of some 
prolongevity genes after fir extract treatment was shown in old cells. In Caco-2 
and AsPC-1 cancer cell lines, Abisil induced expression of both onco-suppressors 
(members of GADD45, DUSP, and DDIT gene families), and proto-oncogenes (c-Myc, 
c-Jun, EGR and others). Thus, the study demonstrates the potential anti-aging and 
anti-cancer effects of Abisil on senescent and cancer cell lines.

INTRODUCTION

It is known that certain plant extracts have 
geroprotector properties. The ability to prolong the life 
in animal models observed for extracts of hawthorn [1], 
Ginkgo biloba [2], blueberry [3], Rosa damascena [4], 
ginseng [5], cranberry [6], green tea [7], Nymphaea root 
[8], Alpinia zerumbet leaf [9], natto [10], Rhodiola rosea 
[11], black rice [12], garlic [13], apple [14], Stachys 
lavandulifolia [15], and others. Anti-cancer agents can 
act as anti-aging drugs [16, 17]. Specific subjects of 
interest are terpenoids (isoprenoids), the largest class 
of naturel products that consist of more than 30 000 
individual compounds [18-20]. They are found in animal, 
fungi and microbial species, but most of terpenoids are 
of plant origin [21-23]. Plants produce terpenoids both 
as primary metabolites and as secondary compounds 
[24]. Most of terpenoids are derived from a five-carbon 
precursor isopentenyl diphosphate (IPP) in acetate/
mevalonate (Ac-MVA) pathway [25]. However, some of 

ones are produced via recently discovered non-mevalonate 
(non-MVA) pathway [26, 27]. Terpenoids have different 
functions; in plants they are involved in basic cellular 
processes such as cell growth and development, cellular 
membrane maintenance, stress response, and specialized 
metabolism [28, 29]. A wide range of terpenoids have 
exhibited anti-cancer and geroprotector activities and are 
the candidate compounds for drug discovery [30-32]. For 
example, extracts from Rosa damascene, that is rich in 
such terpenoid as citronellol, have been shown to increase 
lifespan of Drosophila by protecting against iron toxicity 
and enhancing flies resistance to oxidative stress [30, 
33, 34]. Betulinic acid, a lupane-type triterpene derived 
from birch tree (Betula spp.), have demonstrated the anti-
bacterial, antimalarial, and anti-inflammatory properties, 
activity against the human immunodeficiency virus (HIV), 
and cytotoxicity towards cancer cells [35-37]. Moreover, 
both the anti-aging and anti-cancer properties have been 
observed for such terpenoids as ursolic, maslinic and 
oleanolic acids [14, 38-41]. Thus, the anti-cancer activity 
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and geroprotector properties of terpenoids appear to be 
promising for various therapeutic applications.

We studied whole transcriptomic effects of Abisil, 
the extract of Abies sibirica terpenes (10% bornyl acetate), 
on human cell lines of colon adenocarcinoma (Caco-2), 
pancreas adenocarcinoma (AsPC-1) and human none-
immortalized fibroblasts of the 6th and 13th passages from 
the point of view of potential geroprotector and anti-
cancer properties.

RESULTS AND DISCUSSION

Differentially expressed genes that were affected 
by drug treatment in different cell lines were identified 
(Supplementary Table S1). Abisil changed the expression 
of genes involved in the adaptive cellular stress response 
(by 2 and more times, FDR<0.05) regardless of the 
number of passages of normal fibroblasts. Among affected 
genes are heat shock protein 70 (HSPA1B, HSPA1A), heme 
oxygenase-1, metallothionein 1X, and dual specificity 
phosphatase 2 (DUSP2).

DUSP2 dephosphorylates MAPKs are involved 
in cellular proliferation, apoptosis, differentiation, and 
stress responses [42]. It is known that such geroprotectors 
and hormetins as curcumin induces expression of 
an endoplasmic reticulum-anchored enzyme heme 
oxygenase-1 [43], which is involved in the adaptive 
response of human fibroblasts to oxidative and chemical 
stresses [44, 45]. It utilizes the heme in the various proteins 
and release ferrous iron [46]. In turn metallothioneins 
(e.g. MT1X) are induced during cellular stress response 
involved in detoxification of metal ions [47].

There are also genes associated with the immune 
response, such as BHLHE40 [48] and IFIT2 [49], and 
factors related to cell differentiation, such as FOSB 
[50] and TRIB1 [51]. In addition, TRIB1 plays role in 
lipid metabolism [52]. The upregulated gene Egr-3 is a 
transactivator of genes in fibroblasts, associated with 
tissue remodeling and wound healing [53].

In fibroblasts of both the 6th and 13th passages Abisil 
suppressed the expression of proapoptotic gene BMF [54] 
as well as molecules of cell adhesion: integrins ITGB7, 
ITGAM [55] and cell surface glycoprotein MUC13 [56].

It should be noted, that among the most represented 
molecular pathways induced by Abisil treatment in normal 
fibroblasts, a significant portion is related to longevity, 
including MAPK-, FOXO- and HIF-1 signaling pathways 
(Figure 1) [57].

It is noteworthy that in normal fibroblasts of the 13th 
passage Abisil alters the expression level of a much larger 
number of genes than in the cells of the 6th passage. When 
the selected threshold of expression was 2-fold or more 
(FDR <0.05) in the cells of the 6th passage, Abisil activated 
21 genes and repressed 16 genes, whereas in cells of the 
13th passage, the expression level of 43 and 67 genes 
were affected, respectively. This result may reflect the 
greater randomness of the expression response in old cells 

compared to younger ones. Some authors have mentioned 
the age-dependent increase of cell-to-cell variation in 
gene expression, so called increased transcriptional 
noise [58, 59]. Among the 31 upregulated genes which 
alter their activity only in fibroblasts of the 13th passage, 
the most represented genes are of apoptosis (12 genes) 
and MAPK signaling pathway (5 genes). Among the 62 
downregulated genes in fibroblasts of the 13th passage, 
the BTG2 gene is the one most associated with cellular 
aging in our opinion. Its expression has been shown to be 
important in negatively regulating cell proliferation [60]. 
Thus, terpenes of fir extract induce in normal fibroblasts 
genes of stress response, apoptosis regulation, and tissue 
regeneration.

In this study, fibroblast passaging was considered 
as one of the models of aging. Fibroblasts of the 13th 
passage exhibit various external signs of cellular aging, 
such as inhibition of proliferation as compared with the 6th 
passage (control). When comparing the expression of old 
and young fibroblasts 5804 differentially expressed genes 
were revealed generally.

The following aging-associated features of the 
expression profiles in fibroblasts should be noted: reduced 
expression of various cell adhesion molecules, chemokines 
expression, cyclin-dependent kinases, lamin, GADD45 
family members, cAMP-dependent transcription factors 
(CREB), and PI3K/Akt overexpression. GSEA analysis 
allowed us to identify a number of biological processes, 
with the strongest changes in gene expression being (as 
part of this aging model): the suppression of angiogenesis, 
cell differentiation, MAPK cascade, chemotaxis, response 
to hypoxia, tissue regeneration and other processes, as well 
as modulation of intercellular communication, adhesion, 
migration, and ion exchange.

The potential geroprotector may be able to restore 
the expression level of genes in old cells, and transform 
them into younger cell gene expression profiles [61]. The 
possible mechanisms of the potential geroprotective effect 
of Abisil are:

• GADD45 (growth arrest and DNA damage inducible 
protein) gene family is associated with both tumor 
suppression and with the longevity. The expression 
level of GADD45 was reduced by 2-fold in fibroblasts 
of the 13th passage compared with the 6th passage. At 
the same time, Abisil treatment caused a 2-fold increase 
of expression level of GADD45B/G genes and 1.5-fold 
increase – of GADD45A.

• Abisil treatment is accompanied by a 1.5 to3-fold 
increase in the expression of heat shock proteins genes 
HSPA1B, HSPA1A, DNAJB9 (Hsp40 B9), DNAJB4 
(Hsp40 B4), HSPH1, DNAJB1 (Hsp40 B1), HSPA9, 
and others.

• Modulation of the cell cycle, in particular the MAPK 
signaling pathway.

• Modulation of NF-κB signaling pathway.
• Modulation of Toll-like receptor signaling pathway.
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• Modulation of TGF-beta signaling pathway.
Also worthy of attention is the induction of 

compensatory changes for the following genes:
• Expression of tumor-suppressive regulators of MAPK-

signaling cascade DUSP5, DUSP1, and DUSP6 (dual 
specificity phosphatases) decreases with fibroblasts 
aging (in the 13th passage compared with the 6th). Abisil 
treatment restores it to a level above the previous level.

• The expression level of MYC (v-myc avian 
myelocytomatosis viral oncogene homolog), JUN (jun 
proto-oncogene), FOSB (FBJ murine osteosarcoma 
viral oncogene homolog B), FOSL1 (FOS-like antigen 
1) protooncogenes decreases during fibroblasts aging. 
Abisil treatment restores it to a level of younger cells.

• The expression level of SOCS3 (suppressor of cytokine 
signaling 3) decreases with aging. Abisil treatment 
restores it to a level of early passages.

• CREB5 (cAMP responsive element binding protein 5) 
gene expression is decreased during aging and restored 
to the previous level after Abisil supplementation.

• DDIT3 (DNA damage inducible transcript 3) gene 
expression is decreased during aging and restored to 
the previous level after Abisil supplementation.

• KLF2 and KLF4 (Kruppel-like factors 2 and 4) 
expression is decreased during aging and restored to 
the previous level after Abisil supplementation.

• BMF (Bcl2 modifying factor), TRIB3 (tribbles 
pseudokinase 3), BHLHE40 (basic helix-loop-helix 
family member e40), TLR4 (toll-like receptor 4), RGS4 
(regulator of G-protein signaling 4), GDF15 (growth 
differentiation factor 15), NGFR (nerve growth factor 
receptor), and CTGF (connective tissue growth factor) 
gene expression is increased during aging and restored 
to the previous level after Abisil supplementation.

Among global mortality rates for cancer, pancreas 
cancer takes 6th place, and colon cancer takes 3th 
place [62, 63]. We have studied Abisil’s effects on 
the gene expression level in human cell lines of colon 
adenocarcinoma (Caco-2) and pancreas adenocarcinoma 
(AsPC-1).

Figure 1: KEGG pathways, over-represented by genes, induced by Abisil in normal fibroblasts. Differentially expressed 
genes, cell pathways and processes at the organism level, wich are statistically significant over-represented in the GSEA-analysis, are 
presented.
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It is noteworthy the increased expression level of 
all three genes (GADD45A, GADD45B, and GADD45G) 
related to the GADD45 family - both in normal fibroblasts 
and tumor cell lines (AsPC-1 and Caco-2). GADD45 
family proteins are stress sensors and involved in the 
intersection of several cell signaling pathways, including 
apoptosis, DNA repair, and cell cycle arrest [64]. Defects 
in the GADD45 genes often accompany the initiation 
and progression of malignancies, and GADD45 mediates 
the effects of multiple chemotherapeutic drugs [65]. 
For example, it has been shown that the sensitivity of 
prostate adenocarcinoma cell lines to docetaxel increased 
by enhancing the expression of GADD45A, but lack of 
GADD45 expression, however, can cause inefficiencies of 
chemotherapy [66]. Simultaneously GADD45 activity can 
have anti-aging effects as well [67, 68].

The overexpression of DUSP1-2, DUSP4-6, and 
DUSP8 genes also should be noted. Many genes of the 
DUSP family are responsible for the suppression of 
MAPK signal transduction cascade, thereby being the 

tumor suppressor genes, that are responsible for the 
effectiveness of chemotherapy [69-74].

In both Caco-2 and AsPC-1 cancer cell lines Gene 
Ontology processes were enriched by overexpressed genes 
of apoptosis, intercellular signal transduction, and cellular 
response to organic substance (Table 1).

Thus, the analysis of over-represented pathways 
across differentially expressed genes revealed the 
number of cellular mechanisms that are modulated by 
Abisil (Figures 1-3). Among them: “MAPK signaling 
pathway”, “p53 signaling pathway”, “Apoptosis”, “Cell 
cycle”, “Transcriptional misregulation in cancer”, “HIF-
1 signaling pathway”, “FOXO signaling pathway”, “TGF 
signaling pathway”, “TNF signaling pathway”, “Amino 
sugar and nucleotide sugar metabolism”, and “Protein 
processing in endoplasmic reticulum”. There are also a 
series of processes at the organismal level: “Longevity 
regulating pathway”, “Type II diabetes mellitus”, “Insulin 
resistance”, and “Infectious diseases (Influenza A, 
Legionellosis)”. The last one suggests the potential effect 
(it is difficult discuss about the direction of this effect a 

Table 1: The results of GSEA (GO) for the top 300 of overexpressed genes (Caco-2 and AsPC-1 cell lines, averaged)

GeneOntology process Genes

Apoptotic process

EGR3, INHBA, PDK4, JUN, CTGF, DDIT4, GDF15, EGR2, EPHA2, EGR4, 
CLCF1, MYC, GCLM, CXCR3, PPP1R15A, VEGFA, RFFL, OSGIN1, EGR1, 
GADD45B, CYR61, SNAI2, SOCS3, THBS1, FOSL1, SERPINE1, ID1, CEBPB, 
DDIT3, DUSP6, DSG3, EDAR, BMP2, PLK2, PLK3, ATF3, C8orf4, SPRY2, 
ANXA1, TNFRSF1A, PMAIP1, TNFSF15, ASNS, SOX9, NUAK2, RNF41, 
PIM1, CTH, SIAH2, TNFRSF10B, GATA6, SQSTM1, IER3, CHAC1, STK40, 
TCF7L2, GADD45A, SOCS2, RIPK2, BIRC3, RHOB, FOXO3, F3, TNFSF9, 
PAWR, WNT7B, ARHGEF2, ADM, H1F0, ZC3H12A, HERPUD1, HK2, NCF2, 
DUSP1, ANKRD1, AEN, BBC3, PLEKHG2, EDN1, CITED2, GADD45G

Intercellular signal transduction

INHBA, CXCL8, ARL14, JUN, CTGF, DDIT4, GDF15, EPHA2, CLCF1, MYC, 
CXCR3, PPP1R15A, VEGFA, RFFL, RND3, GADD45B, CCL20, DUSP4, 
CYR61, SNAI2, SOCS3, THBS1, EDN2, ID1, CEBPB, NFATC1, DDIT3, 
NFKB2, DUSP6, EREG, EDAR, BMP2, ARHGAP32, PLK2, FAM110C, 
PLK3, DGKD, ATF3, C8orf4, SPRY2, TNFRSF1A, TRIB1, PMAIP1, PLCH1, 
DUSP8, TNFSF15, SOX9, NUAK2, RNF41, CTH, SIAH2, TNFRSF10B, 
GAB2, SQSTM1, SESN2, IER3, LIF, CHAC1, CYTH1, SPSB1, DVL1, STK40, 
TCF7L2, GADD45A, SOCS2, RIPK2, BIRC3, CCDC88C, NFATC2, HRH1, 
SPRY4, RHOB, FOXO3, F3, CSF1, WNT7B, ARHGEF2, ARFRP1, ADM, 
FOS, HERPUD1, NCF2, DUSP1, ANKRD1, AEN, BBC3, DGKE, RAPGEF5, 
HBEGF, RAP1GAP2, PLEKHG2, WWC1, EDN1, GPAT3, AVPI1, GADD45G

Cellular response to organic substance

EGR3, INHBA, CXCL8, PDK4, JUN, CTGF, DDIT4, GDF15, EGR2, EGR4, 
CLCF1, MYC, CXCR3, PPP1R15A, VEGFA, RFFL, EGR1, CXCL3, CCL20, 
DUSP4, CYR61, SNAI2, SOCS3, THBS1, TGIF1, SERPINE1, EDN2, ID1, 
KLF6, CEBPB, DDIT3, NFKB2, DUSP6, KLF2, EREG, EDAR, BMP2, 
MT1G, ATF3, CPEB2, SPRY2, ANXA1, TNFRSF1A, TRIB1, TNFSF15, ASNS, 
SOX9, PIM1, CTH, GATA6, SQSTM1, SYBU, MT1X, OASL, SOCS2, RIPK2, 
NEDD4L, BIRC3, HRH1, DKK1, CALB1, FAM83G, FOXO3, MT2A, F3, 
CSF1, NR1D1, PAWR, WNT7B, ARHGEF2, FOS, ZC3H12A, HERPUD1, 
NCF2, DUSP1, HDAC5, ANKRD1, BBC3, JUND, HBEGF, PLEKHG2, EDN1, 
CITED2
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Figure 2: KEGG pathways, which are over-represented by differentially expressed genes (AsPC-1 cell line).

Figure 3: KEGG pathways, which are over-represented by differentially expressed genes (Caco-2 cell line).
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priori) ofAbisil on the penetration and proliferation of 
infectious agents or immune response.

As a result of the drug supplementation in all 
examined cell lines the expression level of several 
thousand genes changed. In general, the effects of increase 
in the expression level prevailed.

The top list includes both overexpressed onco-
suppressors (gene of the GADD45, DUSP, and DDIT 
families), and proto-oncogenes (genes of c-Myc, c-Jun, 
EGR families and others.). Data indicate that Abisil 
exposure was associated with the modulation of key 
signaling pathways responsible for cell cycle control, 
proliferation, differentiation, apoptosis (e.g., MAPK, 
TNF, p53, FOXO, and TGF signaling pathways), cell-cell 
signaling, stress response, cAMP-dependent signaling and 
protein refolding.

Of particular note is the increase in the expression 
of all three members of the GADD45 family genes which 
may serve as tumor suppressors. Chemotherapeutic 
drugs induced up-regulation of these genes is one of the 
factors, that determines the effectiveness of chemotherapy. 
Another important effect is the overexpression of most of 
the DUSP family genes responsible for the inhibition of 
the MAPK cascade, which plays a role in the response to 
chemotherapy as well.

The results of GSEA-Gene Ontology analysis allows 
one to make the assumption that the biological processes 
responsible for the negative regulation of apoptosis, 
prevail over the processes of induction of programmed cell 
death in normal human fibroblasts. In the cell lines Caco-2 
and AsPC-1 the situation is reversed.

The potential geroprotector properties of Abisil 
may be conditioned by induced overexpression of both 
GADD45 gene family, and the family of heat shock 
proteins HSPA1A/A1B/A9, Hsp40 B1/B4/B9, and HSPH1.

MATERIALS AND METHODS

Abisil composition

Pharmaceutical composition Abisil® is a complex of 
terpenoids obtained from capsule extract Abies sibirica of 
Penaceae family enriched with monoterpenoids. Chemical 
and quantitative composition of the pharmaceutical 
composition of Abisil was studied with gas-liquid 
chromatography (GLC) by LCM-7A chromatograph 
(Chromatograph, Russia) using a thermal conductivity 
detector (TCD), packed column (length of 3.0 m, a 
diameter of 5 mm), and stationary phase “Apiezon 
L” (M&I Materials Limited, United Kingdom) on 
polychrome. The consumption of carrier gas (helium) was 
30 ml/min, with a column temperature of 125°C, and a 
vaporization chamber temperature of 180°C. Identification 
of the main components was carried on the relative 
retention times and “bystander” compounds. The revealed 

Abisil composition is a standardized terpenoid substance 
derived from capsule extract of Abies sibirica (Table 2).

The terpenoid composition is a thick liquid from 
yellow transparent to milky white in color and has a 
specific odor. It has certain physical constants, namely: an 
acid number (70-90 mg), a saponification number (100-
130 mg), an ester number (10-60 mg), and an index of 
refraction (1,500 to 1,520).

Cell culturing

Human pancreas adenocarcinoma cell line AsPC-
1 (ATCC - CRL-1682) and colorectal adenocarcinoma 
cell line Caco-2 (ATCC - HTB-37) were kindly provided 
by Dr. Peter Chumakov (EIMB RAS, Moscow, Russia). 
Cells were maintained in Dulbecco's modified Eagle's 
medium (DMEM, Invitrogen, USA) supplemented with 
10% and 20% fetal bovine serum (Harlan Sera-Lab, 
Loughborough, UK) accordingly, 100 U penicillin per ml 
and 100 mkg streptomycin per ml (Gibco, Thermo Fisher 
Scientific, USA). Cells were cultured at 37°C in a 5% CO2 
atmosphere and passaged every 2-3 days by dissociation 
with trypsin (Gibco, Thermo Fisher Scientific, USA).

Primary fibroblasts were provided by The 
Laboratory of Cell Cultures of the Institute of Medical 
Cell Technologies (Ekaterinburg, Russia). Cells were 
maintained in the medium described above (with 10% 
FBS). Cells were passaged, when the culture had reached 
approximately 80% confluence. In order to save unique 
properties of the model, cells were frozen in DMEM with 
7% DMSO and 30% FBS after the 4th and 10th passages. 
Effects were studied on the 6th and 13th passages.

Cells in 70% confluence were treated for 6 hours 
with dilution of Abisil (1.2 mg/ml) in DMEM with 2% 
FBS. After that, the culture medium was replaced with a 
fresh medium and in 18 hours cell viability was analyzed 
using MTS test (Promega, USA).

All cells including control cell lines were plated 
in triplicate. RNA extraction for further analysis was 
performed right after treatment with active substance 
dilution.

RNA extraction and quality control

Total RNA was extracted from 24 samples using 
RNeasy Mini kit (Qiagen, Germany), including 4 cell lines 
after treatment (Caco-2, AsPC-1, and primary fibroblasts 
at the 6th and 13th passages) and corresponding control 
cells (all in triplicates). RNA quality and quantity was 
determined with the Agilent 2100 Bioanalyzer (Agilent 
Technologies, USA) and the Qubit 2.0 Fluorimeter 
(Thermo Fisher Scientific, Invitrogen, USA), respectively. 
RNA samples with an RNA integrity number (RIN) higher 
than 8.0 were used for downstream analysis.



Oncotarget7www.impactjournals.com/oncotarget

Table 2: The composition of Abisil

Component
Mass fraction

ppm %

Cyclic monoterpenes: 396969.3 16.9

3-Carene   150186.4   6.4

Bicyclo[2,2,1]hept-2-ene, 2,3-dimethyl   2099.9   0.1

Cyclohexane, 4-methylene-1-(1-methyl ethyl)-   16793.4   0.7

Bicyclo[3,1,0]hex-2-ene, 2-methyl-5-(1-methylethyl)-   150186.4   6.4

Camphne   77703.2   3.3

Acyclic monoterpenes: 248366.8 10.6

Ocimene   52542.8   2.2

Santolina triene   195824   8.3

Esters and Triterpene acids: 533050 22.7

Phosphoric acid, tribornyl ester   380760.6   16.2

o-trifluoroacetyl-isopulegol   136912.8   5.8

Methyl abietate   15376.6   0.7

Sesquiterpenes: 117968 5.0

Longifolene-(V4)   61484.9   2.6

Longifolene-12   18411.6   0.8

Patchoulene   8553.3   0.4

gamma-Elemene   6164.8   0.3

Tricyclo[5,4,0,0(2,8) unden-9-ene, 2,6,6,9-tetramethyl   7912.0   0.3

beta-Humulene   14601.0   0.6

Dihydro-(-)-Neoclovene-(11)   840.4   0.0

Sesquiterpenols: 104287.7 4.4

Agarospirol   28098.4   1.2

Cubenol   2428.0   0.1

tau-Cadinol   2664.4   0.1

cis-Lanceol   1613.7   0.1

Humulane-1,6-dien-3-ol   2369.1   0.1

alpha-Bisabolol   67114.1   2.9

Diterpenes: 18014 0.7

Kaurene   1439.9   0.1

Trachylobane   3486.9   0.1

1H-Naphtho[2,1-b]pyran,3-e   13087.2   0.6

Diterpenols: 16651.7 0.7

Thunbergol   16651.7   0.7

Aromatic hydrocarbons: 2988.1 0.1

9,9’-Biphenanthrene   2988.1   0.1

(Continued )
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RNA library preparation and sequencing

Total RNA (2 μg) from each sample was used for 
mRNA library preparation with a TruSeq RNA Sample 
Preparation Kit v2 Low Sample (LS) protocol (Illumina, 
USA) according to the manufacturer's instructions. The 
quality and concentration of cDNA library was assessed 
using an Agilent 2100 Bioanalyzer (Agilent Technologies) 
and a Qubit 2.0 fluorometer (Invitrogen), respectively, 
before sequencing. To optimizing cluster densities, the 
libraries were quantified by qPCR. cDNA libraries were 
sequenced (single end reads, 75 bp) on an Illumina 
NextSeq 500 platform (EIMB RAS “Genome” center, 
Russia).

Processing of RNA-Seq data and differential 
expression analysis

The raw single end reads were quality controlled 
and trimmed using FastQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) and Trimmomatic (http://
www.usadellab.org/cms/index.php?page=trimmomatic) 
tools with default parameters. The clean reads were 
separately aligned to the human reference genome 
(GRCh38) in the Ensembl (release 80) using TopHat2 
software (http://ccb.jhu.edu/software/tophat/index.shtml). 
The read counting was performed with HTSeq-count 
(http://www-huber.embl.de/HTSeq/doc/overview.html). 
The differentially expressed genes were determined 
with the p-value ≤ 0.01 using the edgeR, lme4, biomaRt, 
Rgraphviz, topGO, ggplot2, pathview, and clusterProfiler 
analysis packages in R.
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Component
Mass fraction

ppm %

Steroids and Hormones: 46179.6 2.0

9,9’-Biphenanthrene   1228.1   0.1

Resibufogenin   29023.1   1.2

9(11)-Dehydrotestosterone   15928.4   0.7

Spirits: 1149.1   0.005

1-Heptatriacotanol   1149.1   0.005

Cycloalkanes: 541610.7   23.0

1,3,5,6-Tetramethyladamantane   541610.7   23.0

Diterpene acids: 323609.2   15.4

Palustric acid   57733.0   2.5

Abietic acid   247651.0   10,5

beta-Pimaric acid   18225.2   2.5
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